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INTRODUCTION

Mitochondria also called as the “powerhouse” of  the 
cell. It is the main site for the synthesis of  adenosine 
tri phosphate (ATP). It also plays a very important role 
in oxidative phosphorylation. Two proteins which are 
found in mitochondria are cytochrome c  (cyt c)[1] and 
apoptosis‑inducing factor  (AIF)[2] which are the main 
signaling molecules of  apoptosis.[3] Mitochondria help 
in energy metabolism,[4] ion balance,[5] and help in the 
maintenance of  redox potential.[6] Cyt c is a globular protein 
which contains iron porphyrin cofactor  (heme c) which 
is linked with the polypeptide chain by covalent bond. 
Cyt c takes part in the electron transport chain  (ETC) 
which happens in the inner mitochondrial membrane. 
It plays a crucial role in cellular respiration. In the ETC, 
when an electron is transferred from ubiquinol‑cyt c 
reductase  (complex III) to cyt c oxidase  (complex IV), 
cyt c undergoes a reversible reaction, simultaneously gets 

reduced and oxidized too. The site of  interaction between 
cyt c and complexes III and IV consists of  the central 
hydrophobic area and the surrounding electrostatic area.[6,7] 
cyt c contains 104 amino acids in mammals. It is a positively 
charged protein. It is a multifunctional enzyme which takes 
part in the life and death decisions of  the cell. It is essential 
for the formation of  the apoptosome and its progression 
to apoptosis. Other than these two functions, the other 
functions of  cyt c include its function as a cardiolipin 
peroxidase,[8] and the detection of  four phosphorylation 
sites on Cyt c, reveals its multifunction are regulated by cell 
signaling pathways.[9]

STRUCTURE OF CYTOCHROME C

Cyt c which is a protein present in the inner membrane of  
the mitochondria was one of  the first proteins which were 
seen in X‑ray crystallography.[10] The heme group is covalently 
bonded to the peptide chain by thioether bonds with cysteine 
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residues 14 and 17.[11] The iron which is present in the heme is 
present in a hexacoordinate structure with His18 and Met80 
as amino acid ligands.[12] The bonding between iron of  the 
heme and Met80 is responsible for weak 695 nm absorption 
band in the spectrum of  cyt c in the oxidized state. Many 
aliphatic and aromatic amino acids have been identified in 
the side chains which make the heme group in a hydrophobic 
environment, which together with the iron ligands His18 
and Met80 are responsible for the high‑redox potential of  
cyt c.[12‑14]

FUNCTION OF CYTOCHROME C IN OXIDATIVE 
PHOSPHORYLATION

Oxidative phosphorylation is the last step in cellular 
respiration where ATP is generated. This process 
takes part in the inner mitochondrial membrane and 
consists of  ETC and ATP synthase.[15] Several substrates 
take part in oxidative phosphorylation, including 
nicotinamide adenine dinucleotide(Reduced) NADH 
and flavin adenine dinucleotide (Reduced) FADH2. 
While the transfer of  the electrons, the ETC generates 
the mitochondrial membrane potential  (ΔΨm). ETC 
complexes I (NADH dehydrogenase), III (bc1 complex), 
and IV  (cyt c oxidase, CcO) pump protons from the 
mitochondrial matrix into space between the inner 
and outer mitochondrial membrane  (OMM).[1,16] This 
mitochondrial membrane potential is utilized by ATP 
synthase (complex V) in the final step, for the production 
of  ATP. [17] ATP synthase converts the membrane 
potential into rotational and chemical energy by joining 
a phosphate and an ADP molecule into ATP.[18] Cyt c 
is located in the intermembrane space and functions as 
a single‑electron carrier from the bc1 complex to CcO 
in the final step of  the ETC.[19] In this step, reduced cyt 
c transfers an electron to CcO and it goes on for four 
times, after which one oxygen molecule is reduced to 
water. In mammalian cell, this reaction is the rate‑limiting 
step of  the ETC under physiological conditions.[20] The 
electron transfer that takes place from cyt c to oxygen 
through CcO, converts oxygen to water with free energy 
of  ΔGo’ = −100 kJ/mol, which is about twice as high 
as compared to the reactions catalyzed by complexes I 
and III.[21] Since this is an irreversible reaction, this step 
of  the ETC should be tightly regulated. This hypothesis 
is supported by the fact that all major regulatory 
mechanisms are present, including allosteric regulation 
of  CcO and cyt c the expression of  tissue‑specific 
isoforms of  cyt c and six subunits of  CcO, and reversible 
posttranslational modifications such as phosphorylations, 
which have been identified in all mammalian OxPhos.[22]

ROLE OF CYTOCHROME C IN APOPTOSIS

The importance of  cyt c during development and life 
is not only in the function of  ATP production and as a 
radical scavenger but also its essential role in apoptosis. 
The first report showing that cyt c plays an important 
role in the cell death pathway was published in 1996 using 
a cell‑free apoptotic system to which compounds were 
added, such as cyt c and deoxy adenosine triphosphate 
(dATP), another factor required apoptosis.[23] Other work 
suggested that molecular changes at the level of  cyt c, but 
not its degradation, occurred during apoptosis.[24] Since 
many studies have been published confirming those initial 
findings. It is now accepted that a key step in the apoptotic 
cascade involves the release of  cyt c into the cytoplasm 
where it binds with apoptotic protease‑activating factor 
1. Binding of  cyt c results in an increased affinity of  
the complex for dATP whose binding is necessary for 
oligomerization and formation of  the apoptosome.[25] The 
apoptosome, in turn, recruits many procaspase‑9 molecules 
and promotes their cleavage to an active form, known 
as the initiators of  apoptosis. Caspase‑9 bound to the 
apoptosome acts as the cleavage factor of  caspase‑3, which 
is otherwise considered the major enzyme in the committal 
to apoptosis.[26] Spectroscopic methods allow the real‑time 
measurements of  cyt c distribution in the cell based on 
the changes in its redox state, when it is released into the 
reducing cytosolic environment during apoptosis.[27] Cell 
lines without cyt c exhibit reduced caspase‑3 activation 
when stimulated with apoptosis‑inducing agents,[28] 
which show that cyt c is essential for caspase activation. 
Therefore, cells without cyt c will not only have decreased 
metabolic rates but also will be nonresponsive to stress 
signals that would induce cell death. Other studies have 
suggested that the release of  cyt c initiates apoptosis by 
binding  inositol trisphosphate  (IP3)  receptors, causing 
calcium release into the cytosol[29] and subsequent calpain 
activation and AIF release,[30] it has long been known 
that isolated mitochondria can reversibly release and 
take up cyt c, while the latter restores their function.[31] 
Cyt c can be selectively released from the mitochondrial 
intermembrane space in a manner that does not involve 
membrane rupture or mitochondrial permeability transition 
pore opening.[32,33] The release of  cyt c takes place before 
permeability transition[34] and is accompanied by a sharp 
increase in reactive oxygen species (ROS) production that 
involves complex I,[35] thus elevated ROS could serve as 
an initiator for permeability transition.

An important example for the reversibility of  cyt c release to 
restore ETC activity was demonstrated in an animal model 
for sepsis. Sepsis is a systemic inflammatory condition and 
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it can lead to multiple organ failure and even death. In an 
animal model for sepsis, the authors found inhibition of  
oxidative phosphorylation at the level of  cyt c and CcO.[36] 
The intravenous injection of  cyt c led to an uptake of  cyt c 
and significantly improved mitochondrial function, and 
survival increased from 15% for the controls to about 50% 
in the septic animal that received the cyt c injections. At 
first, these findings seemed little puzzling, because cyt c not 
only has to be taken up by the mitochondria but it also has 
to go across the cell membrane of  the cell. It was recently 
shown that cyt c contains cell‑penetrating peptide (CPP) 
epitopes in the N‑ and C‑terminal helices.[37] Such CPPs 
help in the cellular uptake of  proteins and may explain that 
intravenous injection of  cyt c can restore ETC function.

FUNCTION OF BCL‑2 PROTEINS AND 
CYTOCHROME C IN APOPTOSIS

The first step for the initiation of  apoptosis in mitochondria 
is mediated through Bcl‑2 family proteins. Bcl‑2, is also 
known as B‑cell lymphoma 2, and was first identified as 
an apoptosis.

Inhibitory protein overexpressed in human follicular 
B‑cell lymphomas due to translocation in chromosome 
number 14 and 18.[38] Following this, three major groups 
of  Bcl‑2 family proteins have been identified in mammals. 
The original group includes Bcl2, Bcl‑xL, and Mcl‑1, an 
opposite functional group have also been found, which 
is also called pro‑apoptotic BH123 protein group which 
includes Bax and Bak; and the third group which is called 
apoptosis initiator group is made of  BH3 domain‑proteins, 
including Bad, Bid, Bim, Puma, and Noxa. When there are 
no apoptotic stress, Bcl‑2, and Bcl‑xL (pro‑survival) form 
heterodimers with Bax and Bak (proapoptotic) and hence 
maintains the integrity of  OMM and stops mitochondrial 
apoptosis. In the presence of  factors which stimulate 
apoptosis, the expression of  proapoptotic proteins Bax 
and BH3‑proteins (apoptosis initiator) increases, after that 
they bind to pro‑survival Bcl‑2 proteins to release Bax/Bak. 
Free Bax and Bak form oligomers, which lead to the release 
of  cyt c from the intermembrane space of  mitochondria 
to the cytosol, by forming a channel in OMM. The cyt c 
which is released activates the caspase cascade to induce 
apoptosis.[39] To understand the function of  Bcl‑2 protein 
in  vivo, numerous mouse models have been developed. 
Loss of  Bcl‑2 in mouse results in numerous defects such 
as, delayed growth, decreased life span, polycystic kidney, 
atrophy in thymus, and spleen.[40] Bcl‑2 null mice also show 
some defects in neurons during the neonatal period.[41] 
Similarly, mice not having Bcl‑xL show early embryonic 
lethality due to the excess apoptosis of  neurons in the 

brain, spinal cord, and erythroid cells in the liver, which 
indicates the role of  Bcl‑xL during neuron and erythrocyte 
maturation.[42] This data strongly support the inhibitory 
function of  Bcl‑2 and Bcl‑xL in apoptosis, though the 
function may be tissue and developmental stage specific. 
The deletion of  any one BH3‑only gene in mice, does not 
result in any significant developmental defects,[1] although 
Bid deletion inhibits Fas‑induced apoptosis in some cell 
types.[43] However, mice with Bid, Bim, and Puma did not 
showed any embryonic lethality, and a subset of  the viable 
triple null mice showed similar developmental defects to 
those of  Bax‑/‑Bak‑/‑mice with interdigital webs of  skin 
on their feet and imperforate vaginas, indicating that, these 
three BH3‑only proteins in combination are essential for 
Bak/Bax activation.[44]

ROLE OF CYTOCHROME C IN DIFFERENT 
DISEASES

Many neurodegenerative diseases are characterized by the 
loss of  specific neurons due to the induction of  apoptosis. 
The impairment in the function of  mitochondria leads to 
the release of  cyt c into the cytosol following apoptosis, 
has been demonstrated in acute neurologic trauma such as 
stroke[45] and brain and spinal cord injury due to any trauma[46] 
as well as chronic diseases such as amyotrophic lateral 
sclerosis  (ALS),[47] Huntington’s disease,[48] and Parkinson 
disease.[49] If  the release of  cyt c could be inhibited, apoptosis 
could be stopped, slowing down the disease progression, and 
limiting neurologic damage after trauma. Reperfusion of  
tissues in the brain after ischemia initiates a cell death cascade 
which exhibits hallmarks of  our proposed cyt c‑centered 
mechanism which also includes altered mitochondrial 
Ca2+ homeostasis,[50] Ca2+‑dependent dephosphorylation of  
proteins in mitochondria, more number of  ROS generation, 
and cardiolipin peroxidation and redistribution,[51] all 
ending in the release of  cyt c from mitochondria and 
inducing apoptotic cell death. Many studies have shown 
that therapeutic intervention at the level of  cyt c release is 
an effective neuroprotective method,[52] and that the cyt c 
release is required for apoptosis to occur.[53] Similar types of  
injury have been demonstrated following traumatic injury to 
the brain[54] and spinal cord,[55] which demonstrates a central 
role of  cyt c release in acute neurologic trauma. Familial ALS, 
which is a chronic neurodegenerative disease, is characterized 
by the presence of  high levels of  ROS due to mutations in 
the radical scavenger superoxide dismutase.[56] An increase in 
the level of  ROS damage cells, which results in the loss of  
specific motor neurons through apoptosis. Cardiomyopathy 
which is mostly contributes to congestive heart failure and 
is initiated by apoptosis of  cardiac muscles. Immunogold 
labeling and immunoblotting of  cardiomyopic hearts with 
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anti‑cyt c and anticaspase 3 antibodies showed significant 
amount of  release of  cyt c into the cytoplasm and activation 
of  caspase 3 when compared to normal heart.[57] Cardiac 
ischemia follows a similar pathway with sudden reperfusion 
causing excessive ROS production which leads to cyt c 
release and ultimately apoptosis. Cyt c release in cardiac 
muscles has been attributed to many mechanisms including 
ROS generation, cardiolipin peroxidation, and Ca2+ overload 
in the mitochondria. Indeed, compounds which prevent 
cardiolipin peroxidation (melatonin) protect mitochondria 
exposed to Ca2+ overload[58] and limit reperfusion injury in the 
heart.[59] Further studies, in particular, the explanation of  the 
signaling pathways which leads to reversible phosphorylation 
of  cyt c, which is necessary to determine the contribution 
of  cyt c phosphorylation in the regulation of  cell death. 
This knowledge may help in the development of  therapies 
that target cyt c directly or through cell signaling pathways 
to prevent stress stimuli from damaging which is otherwise 
the functional cell population. Furthermore, conditions in 
which increased apoptotic activity would be beneficial as 
it can be targeted, such as cancer. A general problem of  
controlling cancer are adaptive mechanisms that allow cancer 
cells to escape the apoptotic pathway, and cyt c  (hyper‑) 
phosphorylation or the inability to dephosphorylate cyt c 
may be one of  the underlying mechanism.

CONCLUSION

Cyt c is one of  the most intensively studied proteins. The 
involvement of  cyt c in several processes which is crucial 
for life and death of  cells, including electron transfer, 
redox‑coupled protein import, cardiolipin oxidation, 
scavenging of  free radicals, and the apoptosome formation, 
make it a like target of  regulation by posttranslational 
modifications. The role of  these phosphorylation to control 
respiration rates and the production of  ROS, in addition to 
direct regulation of  cell‑death‑associated processes such 
as cardiolipin oxidation and the apoptosome formation 
open up the possibility for future manipulation of  cyt c 
phosphorylation in pathological conditions where decreased 
or in contrast, increased apoptotic activity would be beneficial, 
such as neurodegenerative diseases and cancer, respectively.
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