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INTRODUCTION

Diabetes mellitus  (DM) comprises a group of  metabolic 
diseases where an individual has high blood sugar, because 
the pancreas does not produce enough insulin, or that the 
cells present do not respond to the insulin that is produced.[1] 
This increased blood sugar levels produce the characteristic 
symptoms of  polyuria, polydipsia, and polyphagia. After 
food consumption, carbohydrates are broken down into 
glucose molecules in the gut.[2] Glucose is absorbed into 
the bloodstream elevating blood glucose levels, and the 
resulting glycemia stimulates the secretion of  insulin from 

the beta cells of  the pancreas. If  insulin production and 
secretion are altered by the disease, blood glucose dynamics 
will be subjected to changes.[3] Diabetes causes direct 
stress to the cardiac cells leading to an early precipitating 
senescence of  the heart, a condition termed as diabetic 
cardiomyopathy.[4] The prevalence of  DM in heart failure 
populations is approximately 20% in comparison to 4%–6% in 
control populations. Epidemiological studies have showcased 
an increased risk of  heart failure due to poor glycemic control 
in diabetic populations.[5] Myocardial cell death marks a 
vital role in the pathogenesis and progression of  various 
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etiological cardiomyopathies such as ischemia‑reperfusion, 
toxic exposure, and various other chronic diseases, including 
myocardial infarction and atherosclerosis. Myocardial cell 
death is a pathogenic feature in the hearts of  diabetic patients.

DISCUSSION

Mechanism of heart failure in diabetic patients
DM is associated with a markedly increased risk of  
coronary artery disease. In the United  Kingdom 
Prospective Diabetes Studies, the risk of  myocardial 
infarction increased as a function of  hemoglobin A1C 
levels.[6] DM is more likely be related to heart failure 
development by mostly three mechanisms: due to 
associated comorbidities, by favoring the development of  
coronary atherosclerosis, or through a specific diabetic 
cardiomyopathy. Associated comorbidities or risk factors 
may partly account for the increased risk of  heart failure in 
diabetic patients. These cardiovascular risk factors such as 
dyslipidemia, hypertension, hypercoagulability, obesity, and 
inflammation are part of  the insulin resistance syndrome 
and are, at least partly, regulated by nuclear peroxisome 
proliferator‑activated receptors  (PPARs); activation of  
PPAR‑gamma improve insulin sensitivity and endothelial 
function, and lower inflammation and blood pressure.[7] In 
the Framingham cohort, men and women with diabetes 
had higher blood pressures and were more obese than 
nondiabetics; women with diabetes had, in addition, higher 
low‑density lipoprotein‑cholesterol values; high‑density 
lipoprotein‑cholesterol values were consistently lower in 
those with DM than in those without diabetes in both 
sexes.[8] The increased risk of  atherosclerosis in diabetic 
patients may also contribute significantly to the increased 
risk of  HF. Coronary artery disease is the underlying cause 
of  heart failure in approximately two‑thirds of  patients 
with the left‑ventricular systolic dysfunction.[9] In the study 
by Haffner et al.,[10] the 7‑year incidence rate of  myocardial 
infarction in patients with diabetes without prior myocardial 
infarction at baseline was 20.2% versus only 3.5% in 
nondiabetic patients without prior myocardial infarction at 
baseline. This increased risk of  atherosclerosis in patients 
with diabetes has been attributed to diverse mechanisms 
such as endothelial dysfunction[11] or altered hemostatic 
factors (higher levels of  fibrinogen,[12] plasminogen 
activator inhibitor‑1[13,14] or Von Willebrand factor,[15] or 
altered platelet function).[16,17] Molecular mechanisms 
linking hyperglycemia and atherosclerosis have been 
recently reviewed by Aronson and Rayfield.[18] There are 
also data to suggest that diabetes may predispose to heart 
failure development through the existence of  a specific 
diabetic cardiomyopathy.[19] Several hypotheses regarding 
diabetes‑induced heart failure independent of  epicardial 

coronary artery disease have been advanced; these 
include microangiopathy, metabolic factors, and fibrosis. 
Intramyocardial microangiopathy has also been observed in 
patients with diabetes hearts[20,21] combined with functional 
abnormalities related to endothelial dysfunction, diabetic 
microangiopathy may explain the reduced coronary blood 
flow reserve observed in patients with diabetes.[10,22,23] 
Metabolic factors may also play a role in the development 
of  myocardial dysfunction, hyperglycemia, impaired 
myocardial glucose uptake, and increased turnover of  free 
fatty acids may all contribute to DM‑related myocardial 
dysfunction.[24,25] Finally, experimental and clinical data also 
point to a potential role for myocardial fibrosis in diabetic 
cardiomyopathy; intramyocardial accumulation of  collagen 
is a well‑demonstrated consequence of  DM.[25] Moreover, 
the deposition of  advanced glycation end‑products may 
result in increased left‑ventricular stiffness and consequently 
to diastolic dysfunction.[26‑28] In summary, various 
mechanisms may induce a specific diabetic cardiomyopathy. 
Whether this diabetic cardiomyopathy alone may cause 
HF is, however unknown, another possibility is that these 
myocardial alterations related to DM may predispose to the 
development of  HF in response to other conditions such 
as coronary artery disease or hypertension. A synergistic 
effect may exist between DM and hypertension for the 
development of  myocardial fibrosis.[29‑31]

Apoptosis
Unlike necrosis, apoptosis is an active, precisely regulated, 
energy requiring process which appears to be orchestrated 
by a genetic program,[32] and hence, the interchangeable 
use of  the terms “apoptosis” and “programmed cell 
death.” Apoptosis plays a crucial role in the regulation of  
proliferating cell populations in adult tissues and in normal 
tissue development.[33,34] Cells such as neurons and cardiac 
myocytes, even though terminally differentiated contain 
the genes and signal transduction pathways necessary for 
programmed cell death, and thus, retain the ability to die by 
apoptosis.[35] In humans and other mammals, adult cardiac 
myocytes are thought to have, at the best, a very limited 
capacity for self‑renewal,[36] and are intended to survive 
and actively function for the entire life of  the organism. 
Viewed from this perspective, death of  a significant 
number of  adult cardiac muscle cells can have lasting 
adverse consequences on overall cardiac performance

Cardiomyocyte apoptosis and predisposing factors for 
heart failure
Myocardial infarction
Myocardial ischemia and infarction represent the major 
etiologies that underscore the development of  congestive 
heart failure. Cardiomyocyte loss secondary to prolonged 
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ischemia has long been thought to result from overt 
necrosis. While this form of  cell death remains a primary 
cause of  tissue injury, recent studies have suggested that 
cardiomyocyte loss after acute myocardial infarction can 
also be caused by apoptosis.[36‑40] Cardiomyocyte apoptosis 
has been observed in humans following acute myocardial 
infarction. The observation of  a high prevalence of  
cardiomyocyte apoptosis in the peri‑infarct border region in 
comparison to myocardial regions remote from the infarction 
is also evident in myocardium of  both humans with chronic 
heart failure secondary to ischemic cardiomyopathy (ICM) 
as well as in animal models of  chronic heart failure produced 
by intracoronary microembolizations.[41‑46]

Ventricular hypertrophy
Heart failure can result from sustained pressure overload 
as in long‑standing hypertension or aortic valvular stenosis. 
Ventricular hypertrophy is associated with loss of  cardiac 
myocytes that result in focal sites of  replacement fibrosis 
conventionally attributed to necrosis.[47] Recent studies, 
however, have shown that experimentally‑induced 
left‑ventricle (LV) hypertrophy is associated with myocyte 
apoptosis.[48‑50] Studies from other laboratories suggested 
that cardiomyocyte apoptosis may be important in the 
transition from compensated hypertrophy to heart failure.[49] 
In spontaneously hypertensive rats (SHR) with symptoms 
of  heart failure, Li et al.[49] showed a near five‑fold increase 
in the number of  cardiac myocytes undergoing apoptosis 
compared to nonfailing SHR rats. In this rat model, the 
transition to heart failure was accompanied by features 
characteristic of  the heart failure state, including cardiac 
pump dysfunction,[50,51] myocardial fibrosis,[52] and reduction 
in the volume fraction of  cardiac myocytes.

Ventricular dilatation
Left ventricular chamber enlargement is a characteristic 
adaptation of  the failing heart regardless of  etiology. 
Chronic ventricular enlargement and failure can result from 
long‑standing volume overload as in aortic or mitral valve 
insufficiency or the development of  large conduit vessel 
arterio‑venous fistulas. As with ventricular hypertrophy, 
LV chamber dilation is associated with the loss of  cardiac 
myocytes that result in focal sites of  fibrosis. Recent 
studies have shown that passive myocardial stretch is also 
associated with cardiomyocyte apoptosis

Autoimmunity
In inflammatory heart muscle disease, autoimmunity 
is considered to play a role in the pathogenesis of  
impaired cardiac performance.[53] Marked depression 
of  cardiac function occurs in patients with dilated 
cardiomyopathy  (DCM) in the absence of  extensive 

loss of  viable myocardium. Secretory products 
of  immune cells such as macrophages and other 
infiltrating cells could well contribute to abnormalities 
of  contraction and relaxation that are seen, for instance, 
in myocarditis.[53] Pro‑inflammatory cytokines such as 
tissue necrosis factor‑α (TNF‑α), interleukin (IL)‑1, IL‑2, 
and IL‑6 are antigen‑nonspecific glycoproteins that are 
synthesized rapidly and released locally by immune cells 
in response to injury.[54] Cytokines have been shown to 
reduce the positive inotropic response of  isolated cardiac 
myocytes to adrenergic agonists.[55] TNF‑α and IL‑1 have 
also been shown to uncouple agonist‑occupied receptors 
from adenylate cyclase in isolated cardiac myocytes. TNF‑α 
is overexpressed in patients with heart failure regardless 
of  etiology.[56]

Evidence for cardiomyocyte apoptosis in humans with 
heart failure
Studies in tissues obtained from explanted hearts of  
patients with an end‑stage heart failure have confirmed 
the presence of  cardiomyocyte apoptosis.[56] Four of  
seven patients in whom heart failure was due to idiopathic 
dilated cardiomyopathy  (IDC) had immunohistochemical 
evidence of  cardiomyocyte nuclear DNA fragmentation by 
TdT‑mediated dUTP nick‑end labeling (TUNEL) technique 
and demonstrated DNA laddering consistent with apoptosis. 
The study by Peitsch MC et al, proved the endonuclease 
activity in the executionary pathway of  the apoptosis and 
the effectiveness of  the TUNEL in identification of  the 
apoptotic activity.[57] In patients with acromegaly‑induced 
cardiomyopathy, Frustaci  et al.[58] reported a near 500‑fold 
increase in apoptosis of  cardiomyocytes compared to that 
observed in myocardial tissue samples obtained from papillary 
muscle of  patients undergoing mitral valve replacement. 
Biochemically, apoptosis is characterized by internucleosomal 
cleavage of  DNA by Ca2+ and Mg2+‑dependent endonuclease 
whose activity increases during apoptosis.[58] A study showed 
that deoxyribonuclease I, which is indistinguishable from 
endonuclease,[59] is significantly increased in myocardium of  
patients with end‑stage heart failure compared to that of  
myocardium of  nondiseased hearts. The above‑mentioned 
studies in human hearts, strongly suggest that apoptosis 
of  cardiomyocytes occurs in heart failure regardless of  the 
predisposing factor.

Molecular triggers of apoptosis in heart failure
The multigene family of  Bcl‑2‑like proteins, some of  which 
such as Bcl‑2 itself  inhibits apoptosis and others such as 
Bax which promote apoptosis is one of  the best known 
regulators of  the apoptotic process.[60‑62] The ratio of  
Bcl‑2 to Bax, the so‑called “death switch” is often used as 
an indicator of  apoptosis. An increase in this ratio is used 
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to signify attenuation of  the apoptotic process, whereas 
a decrease in the ratio is used to signify exacerbation of  
the apoptotic process. Reported a near doubling of  the 
expression of  Bcl‑2 in cardiac tissue without changes in 
the expression of  Bax, a situation that favors protection 
from apoptosis. Another factor involved in apoptosis is the 
tumor suppressor p53 protein implicated in cell cycle arrest 
through up‑regulation of  p21/WAF‑1, a cyclin‑dependent 
kinase  (Cdk) inhibitor.[62] The p53 protein is believed to 
induce apoptosis in response to DNA damage[63] and other 
signals such as increased expression of  c‑myc in a manner 
independent of  cell cycle arrest.[64] A family of  cysteine 
proteases known as interleukin‑converting enzymes (ICE) 
more recently referred to as “caspases” have recently taken 
a front and center seat as primary regulators of  apoptosis. 
Studies in rats with acute myocardial infarction,[65,66] have 
suggested that ICE‑like proteases modulate apoptosis based 
on the ability of  certain pharmacologic inhibitors, such 
as z‑VAD‑fmk, a nonspecific peptide caspase inhibitor, 
to block the apoptosis process. In a recent study, the 
expression of  caspase‑3 was examined in LV tissue obtained 
from failing human hearts.[67] In this study, caspase‑3 was 
strongly induced in myocytes bordering recent infarcts 
and to a lesser extent in failing hearts due to DCM. 
Colocalization of  caspase‑3 with apoptotic cardiomyocytes 
has been reported in rats following myocardial ischemia and 
reperfusion.[67] The release of  cytochrome c or the release 
of  “apoptosis‑inducing factor” from mitochondria may 
be an important pathway for the activation of  caspases 
with resulting apoptosis in the failing heart.[68] Cytochrome 
c release from mitochondria has been shown to precede 
caspase activation in apoptotic cardiomyocytes during 
ischemia in the rat.[69] Expression of  Bcl‑2 appears to 
prevent activation of  the ICE protease cascade,[70] possibly 
by preventing release of  cytochrome c. Mitochondrial 
abnormalities have been described in patients with heart 
failure that include structural disruption of  the inner 
membrane, hyperplasia, and reduced organelle size.[71] A cell 
surface antigen Fas, a member of  the TNF family, is also 
involved in the regulation of  apoptosis by acting as a receptor 
for the ligand Fas ligand (FasL) which induces apoptosis. 
Recent studies have shown that circulating levels of  soluble 
Fas, a molecule that lacks the transmembrane domain of  
Fas, and therefore, inhibits apoptosis, is increased in patients 
with congestive heart failure.[71,72] In contrast to these studies, 
other studies have reported increased circulating levels of  
soluble FasL in patients with congestive heart failure.[73] 
Soluble FasL is a molecule that promotes binding between 
Fas and FasL and favors apoptosis. Abnormal cell cycle 
events, cell cycle progression in the face of  DNA damage, 
and forcing cell cycle reentry in terminally differentiated cells 

are all potent inducers of  apoptosis.[74] Cardiac hypertrophy 
and failure are associated with DNA synthesis in myocytes 
and with up‑regulation of  molecular markers of  cell cycle 
progression.[75] An increase in proliferating cell nuclear 
antigen, a nuclear protein necessary for DNA synthesis, 
and cell cycle progression[76] was reported in myocardium 
of  dogs with heart failure induced by rapid ventricular 
pacing. Coordination of  events that occur during the cell 
cycle is also dependent on a series of  cyclin‑dependent 
kinases that, as active complexes, appear to be important 
for the progression from G2 to mitosis.[77] Progression 
through G1 also requires inactivation of  several tumor 
suppressor genes, including p53, p21, p16, p15, and p27 and 
the retinoblastoma gene Rb, that inhibit the kinase activity 
of  the cyclin/Cdk complexes.[77] Studies by Anversa and 
Kajstura[77] suggested that adult cardiac myocytes are able to 
divide and that this capacity increases during cardiac disease, 
including heart failure. However, the overall frequency of  
such cell division, if  true, remains very low, insignificant. 
Another possibility is that cardiomyocytes stimulated to 
divide are driven toward apoptosis. Evidence for this can 
be found in studies in which DNA synthesis induced in 
cardiomyocytes transfected with E1A gene, resulted in 
apoptosis rather cell division.[78-80]

Pathophysiological triggers of apoptosis in heart failure
It is often suggested that apoptosis may be induced by 
the same agents that produce necrosis with the type 
of  cell death being dependent on the severity of  the 
insult rather than its qualitative nature.[81] Other factors 
implicated as triggers of  cardiomyocyte apoptosis include 
the formation of  oxygen‑free radicals,[82] exposure to 
hypoxia,[83,84] excess levels of  angiotensin‑II  (A‑II),[85] 
excess levels of  norepinephrine,and increased levels of  
specific cytokines such as TNFα. Among these, the role 
of  A‑II, norepinephrine, and limited oxygenation of  the 
myocardium has received considerable attention in recent 
years and for good reason. Enhanced and sustained activity 
of  the renin‑angiotensin system and the sympathetic 
nervous system as well as localized or even global hypoxia, 
are in many respects characteristic features of  the failing 
heart. Exposure of  isolated adult rat cardiomyocytes to A‑II 
was shown to cause a near five‑fold increase in apoptosis.[85] 
When cardiomyocyte were exposed to A‑II in the presence 
of  losartan, a selective AT1‑receptor antagonist, apoptosis 
was completely blocked.[85] Consistent with this finding, we 
observed an attenuation of  cardiomyocyte apoptosis in 
dogs with microembolization‑induced heart failure treated 
long‑term with the angiotensin‑converting enzyme (ACE) 
inhibitor enalapril.[86] ACE inhibition has also been shown 
to attenuate apoptosis in rats with heart failure. Exposure 
of  isolated adult rat cardiomyocyte to norepinephrine 
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caused a near two‑fold increase in apoptosis.[86] When 
myocytes were exposed to norepinephrine in the presence 
of  the mixed β1‑ and β2‑adrenergic antagonist propranolol, 
the effect was completely blocked.[87] Consistent with these 
findings in isolated rat myocytes, we observed a marked 
reduction of  cardiomyocyte apoptosis in dogs treated 
long‑term with the β1‑selective blocker metoprolol.[88] 
ICE‑like proteases have also been shown to be involved 
in the hypoxia‑induced apoptosis in cardiac myocytes.[89] 
Hypoxic stress a; so leads to an increase in the expression 
and nuclear accumulation of  specific proto‑oncogenes 
such as c‑fos, c‑jun, and c‑myc that have been implicated in 
the induction of  cell cycle progression and apoptosis.[90‑92]

Suicidal autophagy – New mechanism for cell death in 
the diabetic heart
In failing hearts, cardiomyocytes degenerate and interstitial 
fibrosis, which indicates cardiomyocyte loss, becomes more 
prominent in the myocardium. However, the precise mechanism 
of  cardiomyocyte degeneration that leads to cell death is still 
unclear, although it is presumed that lysosomal function and 
autophagy play an important role because lysosomal activity 
increases under stress such as hypoxia.[93] Myocardium that had 
been resected during partial left ventriculectomy performed in 
patients with DCM was examined. Under light microscopy, 
some cardiomyocytes had a marked scarcity of  myofibrils 
and had prominent cytoplasmic vacuolization. Atrophic and 
degenerated cardiomyocytes were often observed adjacent to 
replacement fibrotic tissue.[94] Immunohistochemistry showed 
positivity for lysosome‑associated membrane protein and a 
lysosomal catheptic enzyme in vacuoles of  various sizes in the 
cardiomyocytes, and these lysosomal markers were markedly 
increased in atrophic and degenerated cardiomyocytes. Electron 
microscopy revealed that degenerated cardiomyocytes had 
many vacuoles‑containing intracellular organelles, such as 
mitochondria, and were considered to be autophagic vacuoles.[94]

CONCLUSION

Diabetes is a significant risk factor for cardiovascular diseases, 
with the majority of  these complications being attributed 
to coronary vascular pathology. Diabetes increases both 
apoptosis and necrosis in human myocardium. Multiple 
mechanisms and factors involving ventricular myocytes and 
regarding autophagy, apoptosis and programmed necrosis 
prove the role of  diabetes as a synergistic risk factor in the 
decline of  cardiac performance and contractile impairment 
after myocardial injury.
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